Exercise Biology

After switching from a flexible university class schedule to an 9 to 6 work day in lab, there is much less lenience when it comes planning out when one can exercise. Sure, a person could wake up in the wee hours of morning to go for a jog before making breakfast and getting ready for the day. Or he or she could head to the recreation center later at night after working on research conference applications, poster presentations, and PowerPoints. But for the STEM folk who just don’t have the same kind of motivation to stay fit as they do to excel in their field of research, I have devised a daily fitness plan for the scientist or engineer stuck in lab for the majority of the day. The workout happens to relate specifically to interns working in the Biological Sciences II building, but it can very easily be tailored to Engineering II, Chemistry, PSBN, or any other multiple-story structure.

Cardio Warm Up: Bike all the way to the Biological Sciences II building from home as quickly – and as safely – as possible. Brisk jog up three flights of stairs to drop off your items in the main lab. Jog up an additional flight of stairs to collect ice for your reagents. Jog down to the third floor to place your reagents in ice. Continue down to the first floor to get a refreshing beverage from the vending machine because you “unintentionally” forgot a drink to keep you hydrated during your lab-inspired workout routine. Jog up to the fifth floor to replace the media in your stem cell cultures.

When Researching on the Computer: Find a stable desk chair, preferably without wheels. If you only have wheeled desk chairs, make sure the back rest is against something sturdy, like a wall. Lower body such that back makes an acute angle with the top of the back rest, and elevate legs from the floor to create a position with your body resembling a V. Legs do not have to be completely straight to accommodate the laptop to be placed on your lower thighs or knees. Begin lifting up your knees to crunch your abdomen. Repeat for thirty to fifty reps. If the shaking of your laptop as you crunch is too distracting for you to effectively read scientific papers, raise your legs slightly higher than resting position so that your abdomen contracts. Hold for fifteen to thirty seconds. Release. Do at least three sets of desk chair crunches (or V-holds). To target your obligues, adjust body so that knees are pointing either to the left or the right. Proceed with aforementioned movement. Be sure to work both sides.

When Walking Down the Hall or to Another Building to Use Some Kind of Equipment Your Main Lab Does Not Have: Brisk walk. Sure, you’ll look a little foolish for keeping your legs unnaturally straight while trying to move quickly, but your calves will thank you after your eight to ten week-long research internship. Also, keep your abdomen contracted throughout the course of the walk.

Lunch Break: As inconvenient as it may seem, purposefully forget your lunch at home (if you happen to live nearby.) Or take the bicycle trip to Isla Vista to grab some food. That way, you are forced to have to slip in a little bit more cardio in your day; plus, your meal will taste that much better. If you have a busy day in lab or are a commuter, however, skip this step altogether.

Going Back and Forth from Different Floors to Access Different Labs: When going up the stairs, skip at least one step to create a lunge-like effect that will target your glutes and hind thighs. For taller folk, skip two steps.

Arm Stuff: Centrifuge containers are easily the best weights you’ll find in a biotechnology lab considering that they weigh about the same as a prepubescent child. Keep in mind not to lift aforementioned containers above your head, as they really are much heavier than they appear. If someone asks if you can help them carry samples, equipment, ice chests, or boxes to a distant location, do not hesitate to say yes. If at a desk reading articles, kick aside the desk chair and do fifty pushups against the edge of the desk while reading (Note: ensure that the desk can hold your weight.) Repeat for four sets. Mountain Climbers, planks, and other arm-related exercises can also be done in this fashion.

All exercises mentioned above can serve as a framework for a more effective lab-inspired workout that you can build yourself.

(Author’s Note: In actuality, you are far better off not engaging in any tomfoolery while in lab to prevent from equipment damage and poor experimental yields, and instead, commit to a daily exercise routine that you can complete after you finish your lab work. Just as it pays to work hard in lab to see results, working out to see results pays just as well.)

Biology is as Real as the Life it Studies


STEM majors come in a large assortment — from mathematicians, to physicists, to engineers, to biologists, to doctors. The amount of subdivisions under the STEM umbrella is almost impossible to quantify (but, considering we are STEM majors, of course it’s possible.)

Despite the fact that each field is equally honorable and important in their own right, there remains a hierarchical structure among those pursuing STEM. And which majors are automatically deemed to fall under the lowest possible caste system of science and engineering? The life science majors. The psychology majors. The less quantitative, “soft” science majors.

And why is this the case? Simple. Embedded into our minds is the age old belief that biology, or anything pertaining to the study of life, is qualitative and relies solely on memorization. Between my engineering major friends, there is a joke that goes along the lines of, “Engineering was too difficult for him, so he became a doctor instead.”

While I admire all those who are competent enough to pursue mathematically-intensive professions, let us not bash the ones who helped your mother deliver you as a baby, nor the ones who assessed your head for concussions after a sports-related injury, nor the ones who witness too many deaths and disease-ridden patients for the sake of trying to save people.

I’ve heard counterarguments that engineers can save more lives than doctors merely because they know how to mass produce products — that, depending on what type of product we are referring to, pharmaceutical scientists and biotechnologists help prepare — to the populace, whereas doctors can save only the lives of their patients. But when it comes to life, even just one life is tremendously valuable and deserves to be saved. Don’t you value your life or a loved one’s life perhaps more than the entire population of a country full of strangers? Quality over quantity, ladies and gentlemen. Although preferably, quality and quantity.

Diverging from the clinical side of biology and returning back to the more research-oriented division within biology, the life sciences have, in fact, become more quantitative in this era given how rapidly technology has progressed, and my experiences in a neuroscience lab this summer have only come to reiterate that fact. There are many interdisciplinary aspects to biology now, especially in regards to computer science. The R programming language is useful for ecologists analyzing statistics for a sample and relating their findings to a larger population. In my lab, Python is a wonderful tool for genomics when trying to sort through the millions of base pairs within a single DNA sequence. Electrical engineers may find interesting that biologists do take advantage of multielectrode arrays to map out electrical networks among brain cells. Mechanical and computer engineers can collaborate with biologists to develop artificial organs. Chemical engineers could work alongside biochemists in distributing new pharmaceuticals to target cancer. There doesn’t have to be a dichotomy between math-intensive majors and life science majors. We are all a part of the STEM family, and we function better together than apart.

As a future neuroscientist, I do have to clarify on psychologists. Admittedly, neuroscientists are held in higher esteem because they implement more math than do psychologists. There has also been an irrational rivalry between neuroscientists and psychologists, as neuroscientists focus on the molecular basis of the brain, while psychologists are more interested in the overall function of the brain’s regions. Regardless, they are both interested about the brain. Each play a significant role in understanding the brain, so why are we acting like the Montagues and Capulets? Why despise an enemy who should otherwise be a good friend?

Lastly, to beat down some egotistical arguments (which, if you are a proponent of, you may want to check for hyperactivity in your amygdala, the brain region responsible for emotion): yes, engineers and physicists make more than biologists in this society. We’re aware. No need to rub it in. That’s like if a man were to tell a woman that he’s making $1.00 for every $0.77 she makes, even after the implementation of the Lily Ledbetter Fair Pay Act. Or if a privileged, upper class citizen told a coworker with the same job position that she is making more money because her coworker happens to be in a racial minority group. Football players and actors make more money than combat veterans. Politicians make more money than engineers even after they’ve completed serving their term.

There are many wage disparities that still confound us; however, your salary shouldn’t be how you base your success. Impact. Influence. Happiness. Are you happy doing your job? Are you making enough to support the life you want? How has your work impacted you? Your company? Your country? The world? Will what you are doing influence society, or are all of your efforts just disappearing into the ether?

Engineers are great. Mathematicians are great. Physicists are great. Chemists are great. Geologists are great. Doctors are great. Biologists are great. All STEM professionals are great. All non-STEM professionals are great. We all need one another to function as a healthy society. All I ask, as a life science major, is to not be denigrated or have false assumptions made about my intelligence by the major I chose to pursue.

My research experience in a neurobiology lab this summer and my previous experience in a parasitology lab have made me appreciate biology all the more. We are all trained in our areas of expertise, and I wouldn’t expect a non-biology major to appreciate or want to learn how to reverse transcript RNA into complementary DNA, or manipulate stem cells to differentiate into a brain cancer. That’s okay. What is not okay is belittling the work I do.

Biology is a real science too. And it’s as real as the life it studies.

Baking Bad

Disclaimer: The title of this entry is not representative of how pleasant baking and biomedical research are. Rather, it is a poor pun referencing “Breaking Bad” made by the author solely for the sake of the author’s amusement.

Many times before has science been likened to cooking, and protocols to recipes. I personally find biological research procedures to be much more like baking. Firstly, you can’t exactly sautée cells without potentially killing them. If you even attempt to “fry” your nucleic acid samples, consider all your proteins and DNA strands denatured. And if you find your cell cultures to be a perfect golden brown, there are way too many cells clumped together in that tiny space, and they need to be separated between new plates. Also, never steam any of your reagents, as they become utterly useless if not kept on ice.

So why would baking be a better analogy for biotechnological practices? Simple. You put stuff into a bowl (collection tube), mix your ingredients (reagents) all together by whisk (centrifuge machine) and wait for it to bake in the oven (incubator) for a long while. Afterward, your valiant efforts reward you with delicious cake — or rather, satisfactory (sometimes not) results for your research project.

Like baking, laboratory work is a hit or miss. One day you may have made the most heavenly soufflé with the perfect fluffiness to it. In lab, that day would be when your quantitative results show successful amplification of your complementary DNA samples. Another day, you may find that you didn’t add enough yeast to your cupcakes, and they droop down so sadly like the frown on your face upon seeing them. In lab, that day is when you don’t add enough yeast to your bacterial growth media, and you produce very few bacterial cells that possess your engineered gene of interest.

There is a secret to both baking and scientific research, however, that make a recipe become the magnum opus of the baker and the protocol the publication-worthy study of the scientist: improvisation. What does one do when the results aren’t coming out quite right? Add a little more of so-and-so to balance out whatever is the cause of a not-so-pleasant result. Try another method. Spoons were made for tasting, so why not try a smidge of that cookie dough to determine what is still missing?

But for the record, as similar as biomedical research is to baking, I would advise against eating anything in the lab given some poisonous, carcinogenic reagents, bacteria, and viruses you’ll likely be working with.