Fighting Antibiotic-Resistant Bacteria With Viruses

Bacteria. The single-celled organisms responsible for a range of diseases from food poisoning to the bubonic plague. Modern medicine, especially antibiotics, has allowed us to survive these bacterial diseases. Unfortunately, antibiotics are not working as well as they used to because bacteria are getting better at getting us sick.

The growing problem with using antibiotics, which are the first line of defense against infections, is that bacteria are becoming resistant to antibiotics. Due to the growing prevalence of pathogenic diseases, scientists are scrambling to come up with alternatives to diagnose and treat bacterial infections and diseases.

Undergraduate researcher, Colin Kim, is familiar with this problem, and he is working to help solve it. As a researcher under Chemistry Professor Irene Chen, Kim studies bacteriophages, viruses that infect bacteria. Although there are more bacteriophages on Earth than there are bacteria, the vast majority are uncharacterized. The Chen group aims to characterize bacteriophages so that they can be engineered to treat bacterial infections.

A typical wound contains a diverse community of microorganisms, and the Chen group hypothesizes that it contains bacteriophages. In order to figure out the different types of bacteriophages, you first need a way to collect them. Last summer, Kim helped develop a method of swabbing human skin to collect bacteriophages and determine the amount of bacteriophage present.

Kim is currently collaborating with researchers to develop a diagnostic tool to detect specific types of bacteria. Because bacteriophages have a high affinity for the types of bacteria they infect, researchers can chemically modify the bacteriophage protein coat so that the bacteriophage will fluoresce, or glow, when it binds to bacteria.

Kim uses the bacteriophage M13, which is well-studied and has a strong affinity for E. Coli. By modifying different parts of the M13 protein coat, researchers can make it have a high affinity for a different bacteria such as Methicillin-Resistant Staphlococcus aureus (MRSA), a pathogenic bacteria that is resistant to higher order antibiotics.

Studying bacteriophages may lead to new developments in how we treat bacterial infections and diseases.