A Surprising Pollutant Discovery During my Trip to Panamá

For many middle and upper-class Americans, going to another country is a vacation. People traveling out of a comparably wealthy place often expect blue skies, crystal clear waters, and cocktails served to them at a poolside bar. However, for lower class travelers and students trying to explore the world, this picturesque scene is often not in the budget. Luckily, this can very often make for a more realistic and wholesome experience when exploring a new place. I think that this may be because it indirectly helps young travelers avoid taking their “bubble” with them when they get off the plane.

Over summer break, my friends and I found ourselves traveling Central America on a tight budget in an effort to gain new experiences and collect ourselves before our senior years at UCSB. We expected to see the bright blue, lionfish filled waters at every beach once we arrived via speedboat at our popular tourist destination: Bocas Del Toro, Panamá. After the thunderstorms cleared, we were in search for a beach close to the main town, and we stumbled upon Istmito Beach. Istmito was nudged at the crossroads of the local cemetery and a low income neighborhood. At first sight, we saw Panamanian kids playing soccer downstream of a small pier, on which european travelers from the hostel around the corner were sitting and sunbathing. However, when we looked closely at the tides of this beach, strangely enough we saw thousands of tiny balls washing within the black waves. We initially thought that what we were seeing were pebbles.

My research here at UCSB in Michelle O’Malley’s lab has always encouraged me to ask more questions and to be curious about things that seem out of the ordinary. This curiosity seemed to follow me outside of the lab in this case.

After visiting this beach and coming back to UCSB, I took a look at a few of these balls and discovered that what we saw and what the kids swam in appeared to be some synthetic fiber. The resources and encouragement provided by my graduate student mentor allowed me to inspect the sample via microscope. After taking a look, it seemed that the balls were composed of cotton or another type of fiber. This fiber originates from humans, rather than my original hypothesis which was that the balls were composed of algae.

This is a less salient manner of pollution compared to what we see on the news: heaping piles of trash in the middle of the ocean and straws inside of sea turtle’s noses. However, seeing this type of pollution at a local beach raises the point that in less developed parts of the world there are all manner of pollution caused by human presence. In this case and possibly many others, we found this pollution within 2 square miles of crystal clear beaches that are often the foci of Instagram posts about paradise. Unfortunately, this pollution often accumulates and affects the beaches next to the homes of people running stores and hostels, since the town is much less concerned with losing money from tourism in these locations.

At the end of this eye-opening trip to Panamá, I came to understand that being an undergraduate researcher at UCSB has instilled curiosity into my continually developing world view. The fact that the world is saturated with questions is exactly the reason why training to become a scientist is a satisfying and endless endeavor.

Making Research Feel Doable

The vocabulary used in describing research often makes it come off as excessively dense and confusing. Which of the following sounds like an easier set of tasks? “For my project this summer, I sat in front of a microscope to pick grains of sand, did some coding, made a bunch of PowerPoint presentations, and also poured vinegar in buckets,” or “I extracted and analyzed microfossils found in sediment samples taken from the Pacific and the Caribbean to gain further understanding of ecological baselines for parrotfish, as well as quantifying the effect of fishing regulations on herbivore populations”? The first one probably sounds a lot more manageable, but both statements accurately describe the research project I undertook this summer.

I remember thinking that research was only for “smart” people, and that I wasn’t qualified to do it in any way until some unspecified point in the future. Who would have wanted me to work in their lab? I hadn’t taken any classes relevant to this project, and while I liked ecology, the last time I had a formal lesson in anything related to marine biology was elementary school! What could I do to be useful in something as complicated as research?

I did not feel confident about my abilities at the beginning of the summer. I didn’t have any experience working with fossils, and I didn’t fully understand the larger context that my project fit into. To my surprise, my project mentor Erin was incredibly patient and accommodating. She understood that I had little experience in anything related to this field of work, and guided me through explaining the importance understanding ancient herbivore populations and linking me several academic papers to read for context. Once I was caught up to speed, my summer project felt a lot more accessible, as I understood the goal of the research and what I could do to contribute with my knowledge, ability, and available time. I was able to start thinking independently about how I wanted to sort and display my data as well as what comparisons and analyses I wanted to make. I didn’t know everything, and certainly felt foolish many times, but feeling stupid and feeling your way through (with some guidance!) is probably the best way to learn in research. (See: http://jcs.biologists.org/content/joces/121/11/1771.full.pdf)

Research can be really slow! When I started the EUREKA summer program, I thought that I would have all this data to show at the end because I would be working full time for two months, but I’ve only managed to get through six or seven samples by the end of this whole process. In order to get a conclusion that’s worth publishing, I would probably need to get through somewhere between thirty and one hundred samples. I’m not trying to say that this is a bad thing, but it was definitely an eye-opening experience to see how much time needs to be put in to move science forward. I feel lucky to have been part of the EUREKA program, as the best way to see the speed of the whole process of research is to see every stage of a study or experiment, and this program gave me a look into that.

In my experiences, people tend to recommend reading departmental websites and research papers before approaching professors to look for opportunities in research. Which is great advice! But sometimes it can seem really daunting because of the complicated language and all the vocabulary words being thrown around. To that I say: understand as much as you can and go for it anyways. You don’t need to know everything that’s going on to get started, because a lot of it will make more sense once you start feeling your way through the process. And I’m pretty sure that professors and graduate students know this, and are willing to help you learn as long as you’re willing to put in the time and effort to honor your commitments and do your best to contribute to the group while also gaining understanding along the way. You absolutely do not need to be a genius or have a 4.0 GPA to begin doing research, it’s just a matter of taking things seriously and getting out there!

The most important thing for getting started in research is to go for it, so the link to the directory for NSF Research Experiences for Undergraduates is below! The National Science Foundation (NSF) is a governmental agency that uses taxpayer dollars to pay for academic research in sciences (including social sciences!) and the link below shows programs that use NSF funding to help undergraduates get into research.

Most programs listed occur over the summer, where you get paid to go stay at another college for a little while to do a project. Whether you want to pursue graduate school or not, it’s definitely a great experience that helps you understand the process of research and academia while also getting to travel and live in another place for a bit! It looks great on resumes too, as most of these programs involve a lot of independent responsibilities and public speaking. You do NOT need to be a perfect student or have prior research experience to win these, so get out there and apply if you’re interested!

Meet Your New Sibling! The…Fruit Fly?!

Imagine this. It’s Wednesday afternoon, and you’re sitting on the patio of Isla Vista’s Starbucks coffee shop, quietly sipping your cup of joe. Suddenly, you feel your phone buzz in your back pocket. As you answer the call, before you can even begin to utter a “Hello,” your mom bursts out exclaiming, “Honey! HUGE NEWS! Guess what? You have a new sibling!”

Sputtering out your drink, you feel your heart begin to race from the sudden shock, filled with either anxiety or excitement (or possibly both).

Your mom eagerly continues, “And she’s a fruit fly! Oh, isn’t this wonderful? You are going to LOVE her.”

A new sibling! This is…wait. Hold up. Did she just say…fruit fly?

Aren’t fruit flies those little pests that hover around and contaminate our fruit? With their tiny, pin sized heads and those buggy, large compound eyes, you two couldn’t possibly be siblings…right?

Directly-related siblings? Well no (you can breathe a sigh of relief), you aren’t blood related. But there’s more to this tiny, brilliant creature than what meets the eye. In actuality, Homo Sapiens and Drosophila Melanogaster share many common traits. Because of the vast amount of overlapping similarities, scientists have been able to apply and contribute Drosophila research to understanding human diseases, making leaps in biomedical advancements, and comprehending human behavior.

Two Peas in a Pod: The Human and Fruit Fly

Since the beginning of the 20th century, the fruit fly, or Drosophila Melanogaster, has been used as a model organism by scientists for research and genetic studies.  Flashback to your 6th grade biology course, you most likely learned about a man named Gregor Mendel, a good ol’ Austrian monk, who had a certain passion for gardening, especially when it came to pea plants. Mendel became the “father of modern genetics” by establishing the basic principles of heredity, such as the existence of dominant and recessive traits. However, Mendel’s work was just the beginning of understanding the concepts of inheritance and genetics.

Meet Thomas Hunt Morgan, the founding father of Drosophila research and American genetic studies (debatable, but let’s not go into that). Believing Mendel’s inheritance and Darwin’s natural selection claims to be utter nonsense, he began researching the fruit fly, mostly interested in its developmental mechanisms from fertilization to embryonic formation, only to discover that genes were being carried by chromosomes that were passed from one generation to the next. Supporting Mendel’s inheritance claims, Morgan radically (at the time) introduced the concept of sex-linked chromosomes, that certain characteristics were connected to the gender of the organism. Today, we now are able to identify traits as being female or male due to our little buddy, the fruit fly, and of course, Mr. Morgan and his trainees.

Now, 100 years later, Drosophila research has expanded immensely. In 2000, scientists were able to sequence its entire genome (complete genetic instructions on what’s needed to build, grow, and develop an organism). It has been established that because many human and fruit fly genes are so closely related, commonly, when a sequence for a human gene is newly discovered, it can be directly matched to its equivalent in the fruit fly. This includes human gene sequences that code for diseases; 75% of genes which cause human diseases can be found in Drosophila. Drosophila has played a leading role in in neurobiological investigations, for example, with ADHD and sleep disorders, and also biomedical research advancements, such as with developmental diseases and cancer. You being a bit of a “bugger” isn’t actually too bad. In fact, it’s very beneficial and valuable. However, these developments are only just the beginning. Despite coding Drosophila’s entire genome, scientists are still uncovering what exactly the phenotypes (outward observable characteristics) of these genes are. By revealing what these genes are specifically coding for and their impact on fly sensory physiology and behavior, we can then apply this data to humans in order to further understand why we function in a certain manner due to our genetic makeup.

The Useful Powers of Office Hours

College can be a confusing time, especially when there’s no clear path towards success. When I was given the freedom to pick my own major, classes, and extracurricular activities, I felt overwhelmed. I entered UCSB as an Environmental Studies major, but I actually had no specific direction for my academic or professional future in mind. In fact, I had applied to other schools as different majors, because I really had no idea where I wanted my life to go during or after college.

I started college worried that I would be unable to do well in school without a larger plan to motivate me, so I decided to go to office hours to hopefully get advice from someone who might have been in my position before. I went to my TA for my Introduction to Environmental Studies class because it was the only class I had that was in my major department, so it would be likely that someone teaching the class would have advice most relevant to me.

I thought that things would be awkward and I wouldn’t learn anything, but I was pleasantly surprised to learn that my TA, Zoe Welch (pictured with me above this post’s title), was incredibly understanding and insightful. She helped me understand that I can’t really ask someone else what the “right” thing to do is, because that’s something that only I can answer in time.

Looking back, meeting and talking with Zoe was one of the most pivotal things that happened to me in my first year here. The majority of my successes in undergraduate research so far can be traced back to my interactions with her, as she helped me navigate college life, research, and even the majors that UCSB offers.

Zoe also told me about her experiences in graduate school and research, which made me feel much more comfortable about trying to get involved in undergraduate research. This confidence brought me to applying for an internship with the Burkepile Lab at the end of my first quarter, and I’ve worked as an undergraduate research assistant for them for the last six months. That position led me to apply for the EUREKA scholarship and my current work in the McCauley Lab, as I only learned about the scholarship’s existence from a graduate student in the Burkepile Lab. Zoe even wrote the recommendation letter that got me the scholarship, and we keep in touch regularly.

Some of the people working in the Burkepile Lab during Winter Quarter 2017.

Over the last year, I’ve had the luck to to speak with an assortment of graduate students and professors through office hours, lab work, and even mentorship programs. Multiple graduate students here have told me that they started their PhD programs with the intention of pursuing research, then changed gears to focus more on teaching after getting a taste of the ins and outs of academia. I’ve met people who obtained their master’s degrees, then decided they didn’t really love what they were studying and chose a very different for their PhD topic. All of this came to me as a surprise, as I had been under the impression that a person had to be completely assured and confident to succeed in research and academia. It’s really never too late to change when it comes to school, and it’s absolutely normal to be unsure.

The first step is to talk to people you want to learn from; if you’re interested in a certain subject within your field, look up professors and graduate students who study it and send them an email. Professors and teaching assistants are people who exist outside of lecture halls and discussion sections, and many of them are more than happy to help students sharpen their interests and share what they know. Not everyone will be able to assist you, but there are plenty of people at this university who are happy to help, as long as you ask and are willing to listen to what they have to say. You never know what you might find or learn from getting out there and asking questions, so take advantage of being here at this university and talk to people!

Ultimately, you don’t need to have every aspect of your professional future planned out to be successful, even when working in research. It is all but impossible to know exactly where your life will be in a few years, and your interests are likely to change and evolve as you become more aware of possibilities you never could have imagined.

Even after my experiences finishing my first year of college and working in the Burkepile and McCauley Labs, I still lack certainty on what I want to do after college or study for the next three years. But for now, I’m enjoying working in research and being part of a team where we get to use our heads to collaborate and do something that feels like it matters.

The Robot Revolution – Astronomy and Computers

For thousands of years humans have stared at the night sky, naming constellations, telling stories, and making observations about the light of distant stars. Yet, for the majority of that time, astronomers were reliant on what they could glean with their unaided eye. Without a telescope, only about 6,000 stars can be seen from Earth, and from one spot you could only see about a third of those (Bryson).  This is a small fraction of the 1×1024 stars that are estimated to exist. Since the invention of the telescope in the early 1600s, technological advances have gone hand-in-hand with observational astronomy, paving the way for astronomers to look further and create a clearer picture of our universe.

Before this summer, I had thought that observational astronomy consisted of a lone astronomer, or perhaps a team, travelling to be on site with a telescope and staying up all night to adjust the telescopes position and do their observations. Not too long ago, this wasn’t far from the truth. I’d seen images from the Hubble Space Telescope and some other photographs made by professionals and amateurs alike, yet I had no sense of the magnitude of technological advances that had been made in the field.

This summer I began work with the Supernova Group at Las Cumbres Observatory. Amazingly, Las Cumbres Observatory doesn’t actually do any observing on-site. Instead, they manage robotic telescopes around the world that don’t even require a scientist on-site to operate them. This came as a complete shock to me. As far as my role in all of this, I’m not sure quite what I expected, but it certainly wasn’t 8+ hours a day in front of a computer. For interested readers, my daily work schedule looks something like this:

8:30 am: Bike to work

9-5: Work at my computer

5:00 pm: Bike home

Exciting right? The first few days were grueling and frustrating. I had limited experience with programming and working at a computer all day was a big shift from attending classes and doing homework. Yet, the experience has grown on me. It is amazing how much we humans are capable of with a computer at hand.

My current job at the observatory is to create simulations for the new Large Synoptic Survey Telescope (LSST). The LSST will be one of the biggest telescopes in the world, with an aperture of 8.2 meters. (For some suggested names of future large telescopes see https://xkcd.com/1294/) In addition, LSST is completely automated, with preprogrammed directions of where to look during its 10 year survey. The telescope will take in 30 terabytes of data nightly (Lerner). In comparison, the entire NASA data set from 1955 to 2000 consisted of only 1 terabyte. There are not enough scientists in the world to sort through all this data manually (and I’m certainly glad they didn’t just decide to leave this job to the interns).

My goal is to take a known supernovae and pretend that if it were at a certain point in the sky on a certain day of the LSST’s survey. Then, try to answer the question of whether we would be able to find it again. The process of getting this code up and running has been an ordeal during which I’ve learned a lot about programming along with the science behind supernovae and the LSST. In the end I would like to be able to run 100,000 simulations for each kind of supernovae, totaling to nearly a million. Even my computer gets a bit tired out after that kind of task!

Supernova are notoriously difficult to spot, lasting only a short time, and nearly impossible to spot with the naked eye. In 1980, only one or two supernovae were discovered each year. With the advent of advanced telescopes and digital photography to record more than the human eye, this number increased to nearly 200 by 2000. As of 2012, astronomers are finding over 1000 supernovae per year (O’Brien).

Thankfully, with the billions of stars there are out there, astronomers are no strangers to big data. In fact, big data and astronomy have been going steady for a while now. However, we’re still looking for ways to improve how we can store and analyze this excess of data. Sometimes, new technology leads to great improvements in astronomy, and sometimes astronomy must push the advancement of technology.


Bryson, Bill. “The Reverend Evans’s Universe.” A Short History of Nearly Everything. New York: Broadway, 2003. 33. Print.

O’Brien, Author Tim. “Supernova 2014J and the Upcoming Deluge of Discoveries.” Professor Tim O’Brien. N.p., 10 May 2014. Web. 08 July 2017.

Lerner, Preston. “July/August 2017.” Discover Magazine. Discover Magazine, 19 July 2011. Web. 08 July 2017.